久久五月丁香综合中文亚洲,一本大道无码人妻精品专区,国产人妻人伦精品熟女麻豆,免费无码成人AV在线播放不卡

運(yùn)動(dòng)控制系統(tǒng)驅(qū)動(dòng)器電機(jī)執(zhí)行器|電動(dòng)推桿|電動(dòng)缸直線運(yùn)動(dòng)系統(tǒng)高精密定位平臺(tái)行星減速機(jī)直線軸承和直線導(dǎo)軌滾珠絲杠和梯形絲杠精密滾珠測量反饋裝置精密電主軸機(jī)器人關(guān)節(jié)模組
機(jī)器人運(yùn)動(dòng)控制半導(dǎo)體設(shè)備與材料物料搬運(yùn)工廠自動(dòng)化包裝和紙品加工醫(yī)療和實(shí)驗(yàn)室自動(dòng)化精密金屬成型包裝食品加工醫(yī)療與健康非高速路車輛機(jī)床印刷食品和飲料輪胎和橡膠航空和國防制藥郵政分揀城市交通運(yùn)輸解決方案電動(dòng)叉車和叉車石油和天然氣航天航空及國防清潔能源自動(dòng)導(dǎo)引車輛(AGV)
全部資料驅(qū)動(dòng)器電機(jī)執(zhí)行器|電動(dòng)推桿|電動(dòng)缸直線運(yùn)動(dòng)系統(tǒng)高精密定位平臺(tái)行星減速機(jī)直線軸承和直線導(dǎo)軌滾珠絲杠和梯形絲杠運(yùn)動(dòng)控制系統(tǒng)機(jī)器人關(guān)節(jié)模組其他相關(guān)資料
技術(shù)支持 信息中心 聯(lián)系我們 教育培訓(xùn)
公司簡介 聯(lián)系信息 地圖方位 人員招聘
您的位置:首頁 > 產(chǎn)品 > 高精密定位平臺(tái) > 陶瓷電機(jī)驅(qū)動(dòng)納米定位平臺(tái) > 六角機(jī)器人平臺(tái) > 6 軸和3 軸并聯(lián)運(yùn)動(dòng)學(xué)機(jī)器人
6 軸和3 軸并聯(lián)運(yùn)動(dòng)學(xué)機(jī)器人

Hexapods are inherently by nature of the design and the chosen components of the ALIO Hexapod faster settling times after a move with no servo dither or flexure bend on point.. In addition, the frictional force between the linear motor and the motion linkage means no hysteresis or loss of position if the power is lost. The Hexapod and Tripod with additional preparation can meet Class 10 clean room standards. We can also provide systems that will work in vacuum chambers 10e-10 TORR.


The performance of ALIO Hexapods is an order of magnitude more precise than Hexapods of the past. With complex forward and inverse kinematic equations in a parallel structure the controller system is critical.


ALIO Hexapod has 2 controller choices that are integrated into the total system. The Delta Tau and the ACS motion systems are both high end motion controllers with 4096 interpolation allow for 5nm encoder resolution on each link of the Hexapod. The motion controller provides the necessary structure to enable the user to easily implement and execute complex kinematic calculations. Kinematic calculations are required when there is a non-linear mathematical relationship between the tool-tip coordinates and the matching positions of the actuators (joints) of the mechanism, typical in non-Cartesian geometries.


This capability permits the motion for the machine to be programmed in the natural coordinates of the tool-tip, usually Cartesian coordinates, whatever the underlying geometry of the machine. The "forward-kinematic" calculations use the joint positions as input, and convert them to tool-tip coordinates.